0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 typed CpxTrs
↳5 OrderProof (LOWER BOUND(ID), 2 ms)
↳6 typed CpxTrs
↳7 RewriteLemmaProof (LOWER BOUND(ID), 390 ms)
↳8 BEST
↳9 typed CpxTrs
↳10 LowerBoundsProof (⇔, 0 ms)
↳11 BOUNDS(n^1, INF)
↳12 typed CpxTrs
↳13 LowerBoundsProof (⇔, 0 ms)
↳14 BOUNDS(n^1, INF)
a(b(x)) → b(b(a(a(x))))
a(b(x)) → b(b(a(a(x))))
Generator Equations:
gen_b2_0(0) ⇔ hole_b1_0
gen_b2_0(+(x, 1)) ⇔ b(gen_b2_0(x))
The following defined symbols remain to be analysed:
a
Induction Base:
a(gen_b2_0(+(1, 0)))
Induction Step:
a(gen_b2_0(+(1, +(n4_0, 1)))) →RΩ(1)
b(b(a(a(gen_b2_0(+(1, n4_0)))))) →IH
b(b(a(*3_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
a(gen_b2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_b2_0(0) ⇔ hole_b1_0
gen_b2_0(+(x, 1)) ⇔ b(gen_b2_0(x))
No more defined symbols left to analyse.
Lemmas:
a(gen_b2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_b2_0(0) ⇔ hole_b1_0
gen_b2_0(+(x, 1)) ⇔ b(gen_b2_0(x))
No more defined symbols left to analyse.